Set Operations

Two sets are called disjoint if their intersection is empty, that is, they share no elements: $A \cap B = \emptyset$

The difference between two sets A and B contains exactly those elements of A that are not in B: $A-B = \{x \mid x \in A \land x \notin B\}$ Example: $A = \{a, b\}, B = \{b, c, d\}, A-B = \{a\}$ Cardinality: $|A-B| = |A| - |A \cap B|$

Set Operations

The complement of a set A contains exactly those elements under consideration that are not in A: denoted A^c (or \overline{A} as in the text) $A^c = U-A$

Example: U = N, B = {250, 251, 252, ...} B^c = {0, 1, 2, ..., 248, 249}

Logical Equivalence

Equivalence laws

- Identity laws,
- Domination laws,
- Idempotent laws,
- Double negation law, -
- Commutative laws,
- Associative laws,
- Distributive laws,
- De Morgan's laws,
- Law with implication

 $P \wedge T \equiv P$,

$$P \wedge F \equiv F$$
,

 $\mathsf{P}\wedge\mathsf{P}=\mathsf{P},$

$$\neg (\neg P) \equiv P$$

$$\mathsf{P}\wedge\mathsf{Q}=\mathsf{Q}\wedge\mathsf{P},$$

 $P \land (Q \land R) = (P \land Q) \land R,$

$$\mathsf{P} \land (\mathsf{Q} \lor \mathsf{R}) = (\mathsf{P} \land \mathsf{Q}) \lor (\mathsf{P} \land \mathsf{R}),$$

$$\neg (P \land Q) \equiv (\neg P) \lor (\neg Q)$$

$$\mathsf{P} \to \mathsf{Q} = \neg \mathsf{P} \lor \mathsf{Q}$$

Set Identity

Table 1 in Section 1.7 shows many useful equations

- Identity laws,
- Domination laws,
- Idempotent laws,
- Complementation law, $(A^c)^c = A^c$
- Commutative laws,
- Associative laws,
- Distributive laws,
- De Morgan's laws,
- Absorption laws,
- Complement laws, Spring 2003

 $A \cup \emptyset = A, A \cap U = A$

- $A \cup U = U, A \cap \emptyset = \emptyset$
- $A \cup A = A, A \cap A = A$
- $A \cup B = B \cup A, A \cap B = B \cap A$ $A \cup (B \cup C) = (A \cup B) \cup C, \dots$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \dots$
- $(A \cup B)^{c} = A^{c} \cap B^{c}, (A \cap B)^{c} = A^{c} \cup B^{c}$ $A \cup (A \cap B) = A, A \cap (A \cup B) = A$
- $A \cup A^c = U, A \cap A^c = \emptyset$

CMSC 203 - Discrete Structures

Set Identity

How can we prove $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$? Method I: logical equivalent

 $x \in A \cup (B \cap C)$

- $\Leftrightarrow \mathsf{x} \in \mathsf{A} \lor \mathsf{x} \in (\mathsf{B} \cap \mathcal{C})$
- $\Leftrightarrow x \in A \lor (x \in B \land x \in C)$
- $\Leftrightarrow (x \in A \lor x \in B) \land (x \in A \lor x \in C) \text{ (distributive law)}$
- $\Leftrightarrow \mathsf{x} \in (\mathsf{A} \cup \mathsf{B}) \land \mathsf{x} \in (\mathsf{A} \cup \mathcal{C})$
- $\Leftrightarrow x \in (A \cup B) \cap (A \cup C)$

Every logical expression can be transformed into an equivalent expression in set theory and vice versa.

Set Operations

Method II: Membership table 1 means "x is an element of this set" 0 means "x is not an element of this set"

Α	B	С	B∩C	A∪(B∩C)	AUB	AUC	(A∪B) ∩(A∪C)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

... and the following mathematical appetizer is about...

Functions

A function f from a set A to a set B is an assignment of exactly one element of B to each element of A. We write f(a) = bif b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write f: $A \rightarrow B$

(note: Here, " \rightarrow " has nothing to do with if... then)

If $f:A \rightarrow B$, we say that A is the domain of f and B is the codomain of f.

If f(a) = b, we say that b is the image of a and a is the pre-image of b.

The range of $f: A \rightarrow B$ is the set of all images of all elements of A.

We say that $f: A \rightarrow B$ maps A to B.

Let us take a look at the function $f:P \rightarrow C$ with $P = \{Linda, Max, Kathy, Peter\}$ $C = \{Boston, New York, Hong Kong, Moscow\}$

f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = New York

Here, the range of f is C.

Let us re-specify f as follows:

f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Boston

Is f still a function? yes What is its range? {Moscow, Boston, Hong Kong}

Other ways to represent f:

×	f(x)	Linda Boston			
Linda	Moscow	Max New York			
Max	Boston				
Kathy	Hong Kong	Kathy — Hong Kong			
Peter	Boston	Peter Moscow			

If the domain of our function f is large, it is convenient to specify f with a formula, e.g.:

f:**R→R** f(x) = 2x

This leads to: f(1) = 2 f(3) = 6 f(-3) = -6

Let f_1 and f_2 be functions from A to R. Then the sum and the product of f_1 and f_2 are also functions from A to R defined by: $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ $(f_1f_2)(x) = f_1(x) f_2(x)$

Example: $f_1(x) = 3x$, $f_2(x) = x + 5$ $(f_1 + f_2)(x) = f_1(x) + f_2(x) = 3x + x + 5 = 4x + 5$ $(f_1f_2)(x) = f_1(x) + f_2(x) = 3x + x + 5 = 3x^2 + 15x$

We already know that the range of a function $f:A \rightarrow B$ is the set of all images of elements $a \in A$.

If we only regard a subset $S \subseteq A$, the set of all images of elements $s \in S$ is called the image of S.

We denote the image of S by f(S):

 $f(S) = \{f(s) | s \in S\}$

Let us look at the following well-known function: f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Boston What is the image of S = {Linda, Max}? f(S) = {Moscow, Boston} What is the image of S = {Max, Peter}? $f(S) = \{Boston\}$

Properties of Functions

A function $f:A \rightarrow B$ is said to be one-to-one (or injective), if and only if

$$\forall x, y \in A (f(x) = f(y) \rightarrow x = y)$$

In other words: f is one-to-one if and only if it does not map two distinct elements of A onto the same element of B.